Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731558

ABSTRACT

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Subject(s)
Cellulose , Escherichia coli , Metal Nanoparticles , Silver , Staphylococcus aureus , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Cellulose/chemistry , Cellulose/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanofibers/chemistry , Nanocomposites/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Spectroscopy, Fourier Transform Infrared
2.
Int J Biol Macromol ; 267(Pt 2): 131462, 2024 May.
Article in English | MEDLINE | ID: mdl-38614163

ABSTRACT

The rapid development of the industry has led to the destruction of the earth's ozone layer, resulting in an increasingly serious problem of excessive ultraviolet radiation. Exploring effective measures to address these problems has become a hot topic. Lignin shows promise in the design and preparation of anti-ultraviolet products due to its inherent properties. However, it is important to investigate way to enhance the reactivity of lignin and determine its application form in related products. In this study, phenolic reactions with tea polyphenols were conducted through acid-catalyzed conversion, utilizing organic solvent lignin as the primary material. The phenolic hydroxyl content of the original lignin increased significantly by 218.8 %, resulting in notable improvements in UV resistance and oxidation resistance for phenolic lignin. Additionally, micro-nanocapsule emulsions were formed using phenolic lignin particles as surfactants through ultrasonic cavitation with small-molecule sunscreens. A bio-based sunscreen was prepared with phenolated lignin micro-nanocapsules as the active ingredient, achieving an SPF 100.2 and demonstrating excellent stability. The sunscreen also exhibited strong antioxidant properties and impermeability, ensuring user safety. This research offers a current solution for improving the application of lignin in sunscreens while also broadening the potential uses of plant-based materials in advanced functional products.


Subject(s)
Lignin , Oxidation-Reduction , Polyphenols , Sunscreening Agents , Tea , Ultraviolet Rays , Lignin/chemistry , Polyphenols/chemistry , Catalysis , Tea/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Acids/chemistry
3.
Molecules ; 29(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611944

ABSTRACT

Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the DACNFs during the concentration process were also explored. The AFM analysis results showed that the mean diameters of wood fiber-based CNFs and cotton fiber-based CNFs were about 52.03 nm and 69.51 nm, respectively. However, the periodate oxidation treatment process obviously reduced the nanofibril size and destroyed the crystalline region of the nanofibrils. Due to the high crystallinity of cotton fibers, the cotton fiber-based DACNFs exhibited a lower aldehyde content and suspension stability compared to the wood fiber-based DACNFs. For the concentration process of the DACNF suspension, the bound water content of the concentrated cotton fiber-based DACNFs was lowered to 0.41 g/g, which indicated that the cotton fiber-based DACNFs could have good redispersibility. Both the wood fiber-based and cotton fiber-based DACNF films showed relatively good transmittance and mechanical strength. In addition, to the cotton fiber-based DACNF films had a very low swelling ratio, and the barrier water vapor and oxygen properties of the redispersed cotton fiber-based DACNF films decreased by very little. In sum, this study has demonstrated that cotton fibers could serve as an effective alternative to wood fibers for preparing CNFs, and that cotton fiber-based DACNFs have huge application prospects in the field of packaging film materials due to their stable properties during the concentration process.

4.
Carbohydr Polym ; 336: 122138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670763

ABSTRACT

Water-soluble silver nanoclusters (AgNCs) as a new type of fluorescent material have attracted much attention for their remarkable optical properties and excellent cytocompatibility. However, it is still challenging to synthesize water-soluble AgNCs with good cytocompatibility and excellent fluorescence. Herein, the dialdehyde nanofibrillated cellulose (DANFC)- reduced water-soluble AgNCs capped by glutathione (GSH) with tunable fluorescence emissions were first reported. The DANFC provides a mild reduction environment and crystal growth system for the coordination between silver ions and GSH compared to conventional methods using strong reducing agents. The AgNCs with intense red fluorescence (R-AgNCs@GSH, size ∼2.24 nm) and green fluorescence (G-AgNCs@GSH, size ∼1.93 nm) were produced by varying the ratios of silver sources and ligands, and could maintain stable fluorescence intensity over 6 months. Moreover, the CCK-8 study demonstrated that the R-AgNCs@GSH and G-AgNCs@GSH reduced by DANFC of excellent cytocompatibility (cell viability >90 %) and enable precise multicolor intracellular imaging of Hela cells in 1 h. This work proposes a novel method to synthesize water-soluble AgNCs with tunable fluorescence emission at room temperature based on the classical silver- mirror reaction (SMR) using DANFC as reducing agent, and the synthesized fluorescent AgNCs have great potential as novel luminescent nanomaterials in biological research.


Subject(s)
Cellulose , Metal Nanoparticles , Silver , Solubility , Water , Silver/chemistry , Humans , Cellulose/chemistry , HeLa Cells , Metal Nanoparticles/chemistry , Water/chemistry , Glutathione/chemistry , Nanofibers/chemistry , Cell Survival/drug effects , Optical Imaging/methods , Fluorescence , Fluorescent Dyes/chemistry
5.
BMC Med ; 22(1): 110, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475833

ABSTRACT

BACKGROUND: Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS: Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS: A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS: Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).


Subject(s)
Autoimmune Diseases , Celiac Disease , Colitis, Ulcerative , Crohn Disease , Diabetes Mellitus, Type 1 , Fibromyalgia , Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , Psoriasis , Scleroderma, Systemic , Spondylarthritis , Humans , Randomized Controlled Trials as Topic
6.
Int J Biol Macromol ; 262(Pt 2): 130016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365139

ABSTRACT

In this study, we investigated the structural characterization and biological activities of Bletilla striata polysaccharides (BSPs) for their role as antioxidants and anti-melanogenesis agents in skin healthcare protection. Three neutral polysaccharides (BSP-1, BSP-2, and BSP-3) with molecular weights of 269.121 kDa, 57.389 kDa, and 28.153 kDa were extracted and purified. Their structural characteristics were analyzed by ion chromatography, GC-MS, and 1D/2D NMR. The results showed that BSP-1, which constitutes the major part of BSPs, was composed of α-D-Glcp, ß-D-Glcp, ß-D-Manp, and 2-O-acetyl-ß-D-Manp, with the branched-chain accompanied by ß-D-Galp and α-D-Glcp. BSP-1, BSP-2, and BSP-3 can enhance the total antioxidant capacity of skin fibroblasts with non-toxicity. Meanwhile, BSP-1, BSP-2, and BSP-3 could significantly inhibit the proliferative activity of melanoma cells. Among them, BSP-1 and BSP-2 showed more significance in anti-melanogenesis, tyrosinase inhibition activity, and cell migration inhibition. BSPs have effective antioxidant capacity and anti-melanogenesis effects, which should be further emphasized and developed as skin protection components.


Subject(s)
Antioxidants , Orchidaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Orchidaceae/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Polysaccharides/chemistry
7.
Carbohydr Polym ; 330: 121824, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368104

ABSTRACT

Widely employed petroleum-based food packaging materials have inflicted irreparable harm on ecosystems, primarily stemming from their non-biodegradable attributes and recycling complexities. Inspired by natural nacre with a layered aragonite platelet/nanofiber/protein multi-structure, we prepared high-barrier composite films by self-assembly of cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), montmorillonite (MMT), polyvinyl alcohol (PVA) and alkyl ketene dimer (AKD). The composite films demonstrated outstanding barrier properties with oxygen vapor transmission of 0.193 g·mm·m-2·day-1 and water vapor transmission rates of 0.062 cm3·mm·m-2·day-1·0.1 MPa-1, which were significantly lower than those of most biomass-degradable packaging materials. Additionally, the impacts of mixing nanocellulose with various aspect ratios on the tensile strength and folding cycles of the films were examined. The exceptional resistance of the composite films to oil and water provides a novel and sustainable approach to reduce non-biodegradable plastic packaging.


Subject(s)
Nanofibers , Nanoparticles , Food Packaging , Ecosystem , Cellulose/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry
8.
Mater Horiz ; 11(6): 1588-1596, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38270542

ABSTRACT

Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.


Subject(s)
Cellulose , Hydrogels , Humans , Biomass , Imines , Sodium
9.
Adv Mater ; 36(5): e2305685, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37747155

ABSTRACT

The key dilemma for green hydrogen production via electrocatalytic water splitting is the high overpotential required for anodic oxygen evolution reaction (OER). Co/Fe-based materials show superior catalytic OER activity to noble metal-based catalysts, but still lag far behind the state-of-the-art Ni/Fe-based catalysts probably due to undesirable side segregation of FeOOH with poor conductivity and unsatisfied structural durability under large current density. Here, a robust and durable OER catalyst affording current densities of 500 and 1000 mA cm-2 at extremely low overpotentials of 290 and 304 mV in base is reported. This catalyst evolves from amorphous bimetallic FeOOH/Co(OH)2 heterostructure microsheet arrays fabricated by a facile mechanical stirring strategy. Especially, in situ X-ray photoelectron spectroscopy (XPS) and Raman analysis decipher the rapid reconstruction of FeOOH/Co(OH)2 into dynamically stable Co1-x Fex OOH active phase through in situ iron incorporation into CoOOH, which perform as the real active sites accelerating the rate-determining step supported by density functional theory calculations. By coupling with MoNi4 /MoO2 cathode, the self-assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.613 V, better than commercial IrO2 (+) ||Pt/C(-) and most of reported transition metal-based electrolyzers. This work provides a feasible strategy for the exploration and design of industrial water-splitting catalysts for large-scale green hydrogen production.

10.
Int J Biol Macromol ; 253(Pt 4): 127065, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37748591

ABSTRACT

Direct addition of disinfectants and membrane separation techniques have been common methods to address microbial contamination in water. However, disinfectants may generate toxic by-products, and even minor damage or biofilm formation on filtration membranes can lead to a heightened risk of microbial contamination. Consequently, how to quickly and safely disinfect microbial contaminated water sources remains a huge challenge. In this study, the high-strength broad-spectrum antibacterial CNF/CS composite membrane was fabricated by utilizing cellulose nanofibers (CNF) to reinforce the structure of chitosan (CS). The resulting CNF/CS composite membrane exhibits an impressive tensile strength of 148 MPa and boasts an active chlorine content of 5.29 %. Notably, even after undergoing 50 washing cycles and 10 repeated chlorination procedures, the structural integrity and high active chlorine content of the composite membrane remain preserved, validating its exceptional strength, stability, and chlorine rechargeability. Additionally, the CNF/CS antibacterial materials demonstrate remarkable attributes in terms of rapid sterilization, sustained and consistent release of active chlorine, and efficient inhibition of biofilm formation, demonstrating great potential in efficient, green, and safe sterilization.


Subject(s)
Chitosan , Disinfectants , Nanofibers , Chitosan/pharmacology , Chitosan/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Chlorine , Anti-Bacterial Agents/pharmacology , Water/chemistry , Halogens
11.
Biomed Pharmacother ; 167: 115465, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37713988

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI), a subsequent injury caused by thrombolytic reperfusion post ischemic stroke (IS). Naotaifang (NTF) formula, a novel traditional Chinese medicine (TCM) remedy against IS, was shown to exert beneficial effects in inhibiting inflammation and inhibiting lipid peroxide synthesis in our previous research. PURPOSE: This study aimed to further explore the role of NTF in attenuating oxygen-glucose deprivation//reoxygenation (OGD/R)-induced inflammation and ferroptosis by regulating microglial M1/M2 polarization through the bone morphogenetic protein 6(BMP6)/SMADs signaling pathway. METHODS: BV2 microglia were used to establish an OGD/R model. The effects of NTF on inflammation and ferroptosis in OGD/R-injured BV2 cells were separately detected by immunofluorescence assay, fluorescent probe, DCFH-DA flow cytometry, enzyme-linked immunosorbent assay, and western-blot. RESULTS: The present results revealed that the M1 phenotype of microglia promoted the secretion of pro-inflammatory cytokines and aggravated ferroptosis and brain damage following OGD/R. However, an inhibitor of BMP6, LND-193189, reversed the aforementioned effects. Similarly, NTF promoted the shift of microglia from M1 to M2. Besides, NTF treatment effectively inhibited the expression of hepcidin, BMP6, SMADs and promoted the expression of ferroportin (FPN, SLC40A1) and γ-L-glutamyl-L-cysteinylglycine (glutathione or GSH) peroxidase 4 (GPX4). CONCLUSION: Microglial M1/M2 polarization plays a pivotal role in inflammation and ferroptosis during OGD/R. The BMP6/SMADs signaling pathway is a potential therapeutical target of inflammation and ferroptosis induced by the transformation of microglia. Moreover, NTF could alleviate inflammation and ferroptosis through the BMP6/SMADs signaling pathway in OGD/R-injured microglia.

12.
Ageing Res Rev ; 91: 102063, 2023 11.
Article in English | MEDLINE | ID: mdl-37673132

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.


Subject(s)
Biological Products , Ferroptosis , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/metabolism , Neurodegenerative Diseases/metabolism , Substantia Nigra/metabolism
13.
Small ; 19(40): e2301353, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282825

ABSTRACT

2D carbon nanomaterials such as graphene, carbon nanosheets, and their derivatives, representing the emerging class of advanced multifunctional materials, have gained great research interest because of their extensive applications ranging from electrochemistry to catalysis. However, sustainable and scalable synthesis of 2D carbon nanosheets (CNs) with hierarchical architecture and irregular structure via a green and low-cost strategy remains a great challenge. Herein, prehydrolysis liquor (PHL), an industrial byproduct of the pulping industry, is first employed to synthesize CNs via a simple hydrothermal carbonization technique. After mild activation with NH4 Cl and FeCl3 , the as-prepared activated CNs (A-CN@NFe) display an ultrathin structure (≈3 nm) and a desirable specific surface area (1021 m2 g-1 ) with hierarchical porous structure, which enables it to be both electroactive materials and structural support materials in nanofibrillated cellulose/A-CN@NFe/polypyrrole (NCP) nanocomposite, and thus endowing nanocomposite with impressive capacitance properties of 2546.3 mF cm-2 at 1 mA cm-2 . Furthermore, the resultant all-solid-state symmetric supercapacitor delivers a satisfactory energy storage ability of 90.1 µWh cm-2 at 250.0 µW cm-2 . Thus, this work not only opens a new window for sustainable and scalable synthesis of CNs, but also offers a double profits strategy for energy storage and biorefinery industry.

14.
Int J Biol Macromol ; 245: 125395, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37330075

ABSTRACT

This work proposed a promising biorefinery method for the deconstruction of moso bamboo by using p-toluenesulfonic acid (P-TsOH) pretreatment to product high-purity cellulose (dissolving pulp). The cellulose pulp with high α-cellulose content (82.36 %) was successfully prepared for 60 min at low pretreatment temperature (90 °C) and atmospheric pressure. After the simple bleaching and cold caustic extraction (CCE) processes, the properties of cellulose pulp, such as α-cellulose content, polymerization, ISO brightness, all met the standard of dissolving pulp. In general, the cooking method through P-TsOH pretreatment can shorten the preparation time, which can effectively reduce energy consumption and chemical consumption. Therefore, this work may provide a new perspective for the green preparation of dissolving pulp that can be used to produce lyocell fiber after ash and metal ion treatment.


Subject(s)
Cellulose , Wood , Cellulose/chemistry , Wood/chemistry , Benzenesulfonates , Poaceae
15.
Biomed Pharmacother ; 164: 114312, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37210894

ABSTRACT

Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.


Subject(s)
Alzheimer Disease , Biological Products , Ferroptosis , Animals , Alzheimer Disease/metabolism , Biological Products/therapeutic use , Iron/metabolism , Metals
16.
Molecules ; 28(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37049719

ABSTRACT

The demand for antimicrobial materials is gradually increasing due to the threat of infections and diseases caused by microorganisms. Silver nanoparticles (AgNPs) are widely used because of their broad-spectrum antimicrobial properties, but their synthesis methods are often environmentally harmful and AgNPs difficult to isolate, which limits their application in several fields. In this study, an aqueous solution of dialdehyde cellulose (DAC) was prepared and used as a reducing agent to synthesize AgNPs in an efficient and environmentally friendly process. The synthesized AgNPs can be easily separated from the reducing agent to expand their applications. In addition, the AgNPs were immobilized in situ on dialdehyde cellulose to form antibacterial composite films. The results showed that the prepared silver nanoparticles were mainly spherical and uniformly dispersed, with an average size of about 25 nm under optimal conditions. Moreover, the dialdehyde cellulose-nanosilver (DAC@Ag) composite films had excellent mechanical properties, positive transparency, ultraviolet-blocking properties, and effective antibacterial activity against E. coli and S. aureus. Notably, the composite films exhibited excellent oxygen and water vapor barrier properties, with WVT and ORT of 136.41 g/m2·24 h (30 °C, 75% RH) and <0.02 cm3/m2·24 h·0.1 MPa (30 °C, 75% RH), respectively, better than commercial PE films. Hence, this study not only provides an environmentally friendly method for the preparation of silver nanoparticles, but also offers a simple and novel strategy for the in situ synthesis of silver-loaded antibacterial composite films.


Subject(s)
Metal Nanoparticles , Reducing Agents , Silver , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology
17.
Carbohydr Polym ; 311: 120753, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028856

ABSTRACT

Lignin-containing cellulose nanopapers are emerging multifunctional materials in the fields of coatings, films, and packaging. However, the forming mechanism and properties of nanopapers with various lignin content have not been thoroughly studied. In this work, a mechanically strong nanopaper was fabricated based on lignin-containing cellulose micro- and nano-hybrid fibrils (LCNFs). The influence of lignin content and fibrils morphology on the formation process of nanopapers was investigated to understand the strengthening mechanism of nanopapers. LCNFs with high lignin content provided nanopapers with intertwined micro- and nano-hybrid fibrils layers with small layer spacing, while LCNFs with low lignin content offered nanopapers interlaced nanofibrils layers with large layer spacing. Although lignin was expected to interfere with hydrogen bonds between fibrils, the uniformly distributed lignin contributed to the stress transfer between fibrils. Due to the good coordination between microfibrils, nanofibrils and lignin (as network skeleton, filler and natural binder, respectively), the well-designed LCNFs nanopapers with lignin content of 14.5 % showed excellent mechanical properties, including tensile strength (183.8 MPa), Young's modulus (5.6 GPa) and elongation (9.2 %). This work deeply reveals the relationship between lignin content, morphology and strengthening mechanism of nanopapers, and providing theoretical guidance for employing LCNFs as structural and reinforcing materials to design robust composites.

18.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838845

ABSTRACT

The charge plays an important role in cellulose nanocrystal (CNC) self-assembly to form liquid crystal structures, which has rarely been systematically explored. In this work, a novel technique combining atomic force microscopy force and atomistic molecular dynamics simulations was addressed for the first time to systematically investigate the differences in the CNC self-assembly caused by external positive and negative charges at the microscopic level, wherein sodium polyacrylate (PAAS) and chitosan oligosaccharides (COS) were used as external positive and negative charge additives, respectively. The results show that although the two additives both make the color of CNC films shift blue and eventually disappear, their regulatory mechanisms are, respectively, related to the extrusion of CNC particles by PAAS and the reduction in CNC surface charge by COS. The two effects both decreased the spacing between CNC particles and further increased the cross angle of CNC stacking arrangement, which finally led to the color variations. Moreover, the disappearance of color was proved to be due to the kinetic arrest of CNC suspensions before forming chiral nematic structure with the addition of PAAS and COS. This work provides an updated theoretical basis for the detailed disclosure of the CNC self-assembly mechanism.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Nanoparticles/chemistry
19.
Int J Biol Macromol ; 234: 123597, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796560

ABSTRACT

Structural color is an eye-catching phenomenon in nature, which originates from the synergistic effect of cholesteric structure inside living organisms and light. However, biomimetic design and green construction of dynamically tunable structural color materials have been a great challenge in the field of photonic manufacturing. In this work, the new ability of L-lactic acid (LLA) to multi-dimensionally modulate the cholesteric structures constructed from cellulose nanocrystals (CNC) is revealed for the first time. By studying the molecular-scale hydrogen bonding mechanism, a novel strategy that electrostatic repulsion and hydrogen bonding forces jointly drive the uniform arrangement of cholesteric structures is proposed. Due to the flexible tunability and uniform alignment of the CNC cholesteric structure, different encoded messages were developed in the CNC/LLA (CL) pattern. Under different viewing conditions, the recognition information of different digits will continue to reversibly and rapidly switch until the cholesteric structure is destroyed. In addition, the LLA molecules facilitated the more sensitive response of the CL film to the humidity environment, making it exhibit reversible and tunable structural colors under different humidity. These excellent properties provide more possibilities for the application of CL materials in the fields of multi-dimensional display, anti-counterfeiting encryption, and environmental monitoring.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Humidity , Nanoparticles/chemistry , Hydrogen Bonding
20.
Biomed Pharmacother ; 157: 114026, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436491

ABSTRACT

Intestinal microbiota is a unique ecosystem, known as the "second genome" of human beings. With the widespread application of next generation sequencing (NGS), especially 16 S rRNA and shotgun sequencing, numerous studies have shown that dysregulation of intestinal microbiota is associated with many central nervous system diseases. Ischemic stroke (IS) is a cerebrovascular disease with high morbidity and mortality. Brain damage in IS affects intestinal function, and intestinal dysfunction further aggravates brain damage, forming a vicious circle of mutual interference in pathology. The microbiota-gut-brain axis study based on the intestinal microbiota has opened up broader ideas for exploring its pathogenesis and risk factors, and also provided more possibilities for the selection of therapeutic targets for this type of drug. This review discussed the application of NGS technology in the study of intestinal microbiota and the research progress of microbiota-gut-brain axis in recent years, and systematically sorts out the literature on the relationship between ischemic stroke and intestinal microbiota. It starts with the characteristics of microbiota-gut-brain axis' bidirectional regulation, respectively discusses the high risk factors of IS under intestinal microbiota imbalance and the physiological and pathological changes of intestinal microbiota after IS, and summarizes the related targets, in order to provide reliable reference for the treatment of IS from intestinal microbiota. In addition, natural botanical active ingredients have achieved good results in the treatment of IS based on regulating the homeostasis of gut microbiota, providing new evidence for studying the potential targets and therapies of IS based on the microbiota-gut-brain axis.


Subject(s)
Gastrointestinal Diseases , Gastrointestinal Microbiome , Ischemic Stroke , Humans , Gastrointestinal Microbiome/physiology , Ischemic Stroke/drug therapy , Ecosystem , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...